QuantumWavesComplex
Overview
QuantumWavesComplex
inherits from QuantumComplex
and specializes in wavefunction-based quantum calculations with extended capabilities.
compute_long_range_interactions()
→ Calculates long-range molecular interactions.get_quadrupole_moment()
→ Returns quadrupole moments.get_radius_of_gyration()
→ Returns radius of gyration.get_free_energy()
→ Returns the computed free energy.get_dispersion_energy()
→ Returns dispersion energy contributions.get_forces()
→ Returns force matrix.get_positions()
→ Returns atomic positions.get_distance_matrix()
→ Returns the distance matrix.get_fermi_level()
→ Returns the Fermi level energy.get_eigenvalues()
→ Returns the eigenvalues of the Kohn-Sham matrix.get_homo_lumo_gap()
→ Returns the HOMO-LUMO gap.get_dipole_moment()
→ Returns dipole moment calculation.get_effective_potential()
→ Returns effective potential.get_electrostatic_potentials()
→ Returns electrostatic potential.get_wavefunctions()
→ Returns calculated wavefunctions.get_potential_energy()
→ Returns the potential energy of the molecule.get_zpe_hartree()
→ Returns zero-point energy in Hartree units.get_E0_elec_plus_zpe()
→ Returns electronic energy plus ZPE.get_freqs_cm()
→ Returns vibrational frequency values.get_thermal_corr_internal_energy()
→ Returns thermal correction to internal energy.
Usage Example
Methods Explained
compute_long_range_interactions()
This method computes quantum-level properties at a DFT (B3LYP) level of theory including geometry optimization, thermal corrections via a frequency calculation (harmonic approximation).
get_quadrupole_moment()
This method returns the quadrupole moment tensor. Recall $$ Q_{ij} = \sum_k q_k \left( 3r_{ki} r_{kj} - \delta_{ij} r_k^2 \right) $$ where \(q_k\) is the charge at nucleus/electron \(k\), \(r_{ki}\) is the \(i\)-th coordinate charge of \(k\) and \(\delta_{ij}\) is the Kronecker delta.
Essentially we return \([Q_{xx}, Q_{yy}, Q_{zz}, Q_{xy}, Q_{xz}, Q_{yz}]\) as a List
.
get_radius_of_gyration()
This method returns the radius of gyration. Recall that \(R_{g}\) is a measure of the spatial distribution of atomic positions around the center of mass (compactness). Moreover,
$$
R_g = \sqrt{\frac{\sum_{i} m_i r_i^2}{\sum_{i} m_i}}
$$
Note that a small \(R_g\) usually corresponds to a compact structure like a folded protein or dense polymer. Large \(R_g\) usually correspons to extended structures (stretched polymer).
We return the mass weighted radius of gyration in Angstroms as a float
.
get_free_energy()
This method returns the thermal and dispersion corrected total/free energy. Recall
$$
G = E_{\text{elec}} + U_{\text{thermal}} + PV - TS
$$
where \(E_{\text{elec}}\) is the electronic energy from HF/DFT, \(U_{\text{thermal}}\) is the thermal correction, \(PV\) is pressure-volume work, and \(TS\) is temperature times entropy from a harmonic analysis (aka via hessian). From here we can compute
$$
E_{\text{corrected}} = E_{\text{elec}} + U_{\text{thermal}} + E_{\text{dispersion}}
$$
where \(E_{\text{dispersion}}\) accounts for van der Waals interactions.
We return \(E_{\text{corrected}}\) as a float
in Hartree.
get_dispersion_energy()
This method returns the dispersion correction used above. Recall that dispersion energy accounts for long-range weak interactions that are not captured by standard DFT functionals. This method returns \(E_{\text{dispersion}}\) as a float
.